Konstruktionshinweise

Grundsätzlich:

Besprechen Sie zum frühstmöglichen Zeitpunkt Ihr Vorhaben mit der Werkstatt!

Materialwahl:

Überlegen Sie wofür Ihr Bauteil gebraucht wird. Soll es Wärme leiten oder nicht, wird es extremen Temperaturen ausgesetzt, wird es in einen Vakuumbehälter eingebaut, welchen elektrischen Eigenschaften soll es genügen oder wird es Magnetfeldern ausgesetzt!

Wo wird das Bauteil eingesetzt:

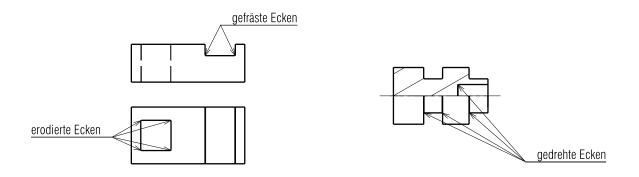
Wird das Bauteil an oder in eine bestehende Aparatur an- oder eingebaut von der es keine Zeichnung gibt, bitten wir Sie die die Werkstatt zu informieren und die Aparatur zur Verfügung stellen, um die Abmessungen zu kontrollieren! Transportable Bauteile sollten Sie, vor der Fertigung Ihres Bauteils, in die Werkstatt bringen.

Ecken:

Ecken an Fräs- und Drehteilen sowie an Teilen, welche mittels Funkenerosion bearbeitet worden sind, sind nie scharfkantig. Sie weisen in den vermeintlichen Ecken immer einen Radius auf der im Minimum 0.2 mm beträgt! Dieser Radius ensteht, da die Schneideplatten der Drehstähle vorne einen Radius haben und weil Fräser einer Abnützung unterliegen. Beim Senkerodieren ensteht der Radius durch den Abbrand der Elektrode.

Radien bieten den Vorteil der besseren Stabilität, ich denke da an die Bruchgefahr eines dünnwandigen Teils aus Keramik. Bei solchen Teilen sollte der grösstmögliche Radius verwendet werden!

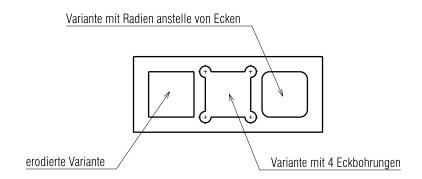
Taschen:


Taschen sollten vorzugsweise in den 4 Eckpositionen einen Radius haben, welcher sich aus dem Durchmesser der Fräser ergibt. Muss ein scharfkantiges Gegenstück in die Tasche eingepasst werden, besteht die Möglichkeit die 4 Eckpositionen mit Bohrungen zu versehen.

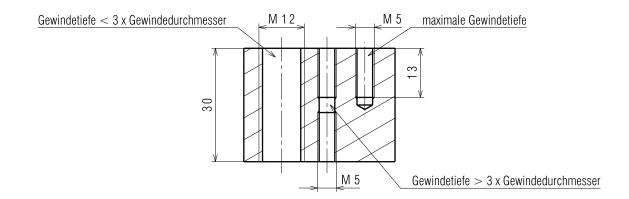
Gewinde:

Gewinde können nicht beliebig tief geschnitten werden. Die Gewindetiefe entspricht maximal 2-3 x dem Gewindedurchmesser!

Ecken:


Gefräste Ecken, gedrehte Ecken und erodierte Ecken haben einen minimalen Radius von 0.2 mm.

Taschen:


Um eine Tasche herzustellen in die ein kantiges Gegenstück eingepasst werden muss gibt es zwei Möglichkeiten, eine teure und eine kostengünstige. Die teure Variante ist nur mit Funkenerosion zu erreichen. Die kostengünstige Variante hat vier Eckbohrungen und ist nur möglich, wenn genügend Platz vorhanden ist!

Alle anderen Taschen sollten mit Radien anstelle von Ecken gefertigt werden. Die Radien entsprechen dem Fräserdurchmesser!

Gewinde:

Weil Gewindetiefen maximal 2-3 x dem Gewindedurchmesser entsprechen können, muss ein tieferes Gewinde von zwei Seiten geschnitten werden.

Zeichnungsnormen

Ansichten:

Ansichten eines Werkstücks, Darstellungen von Wellen und Schnitten in den vorgegebenen Normen zeichnen!

Eine Zeichnung soll übersichtlich sein und alle notwendigen Angaben über das Werkstück enthalten, das heisst: Besser eine Ansicht oder einen Schnitt mehr darstellen!

Linien:

Linientypen und Linienstärken sind einzuhalten!

Vermassung: (siehe Beispielzeichnungen)

Eine Zeichnung soll keine Rechenaufgabe sein, das heisst: Lieber ein Mass zuviel als zu wenig!

Alle Massangaben sind in mm anzugeben!

Wo nötig Masse tolerieren (siehe Toleranztabellen)!

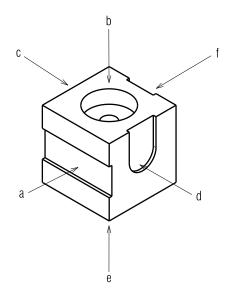
Alle nicht tolerierten Masse sind für die Nennmasse <6mm +/- 0.05, <30mm +/- 0.1, <120mm +/- 0.15, <400mm +/- 0.2 und <1000mm +/- 0.3!

Bei Bohrungen, Wellen oder anderen kreisförmigen Konturen steht immer ein Φ -Zeichen vor dem Nennmass!

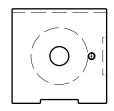
Radien werden mit einem R vor dem Nennmass bezeichnet!

Bei der Gewindebemassung steht immer ein M vor dem Nennmass (M steht für mertrisches Standard Gewinde)!

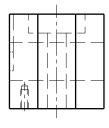
Bei metrischen Gewinden, die nicht dem Standard entsprechen steht nach dem Nennmass zusätzlich noch die Steigungsangabe (M18x1)!

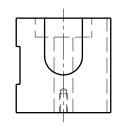

Kanten: (siehe Beispielzeichnungen)

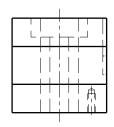
Nicht vermasste Kanten werden auf der Zeichnung mit dem Vermerk angegeben: Nicht vermassten Kanten 0.2-0.3 mm

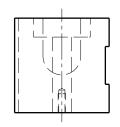

Zeichnungskopf: (siehe Beispielzeichnungen)

Beinhaltet: Material, Menge, Benennung, bei mehreren Teilen Positionsnummern, Massstab, Filename und Datum, ebenso wichtig sind Name, Telefonnummer und E-mail Adresse des Auftraggebers!


Ansichten eines Werkstücks:

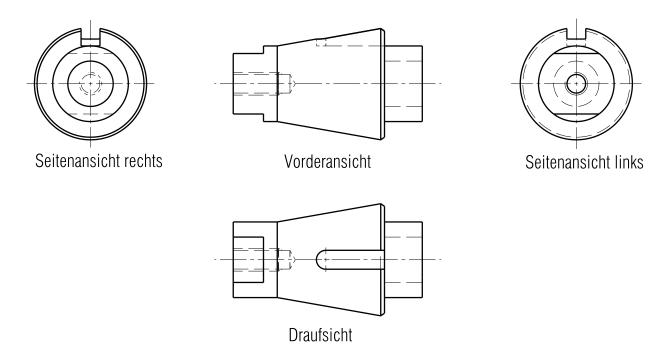

Isometrische Ansicht

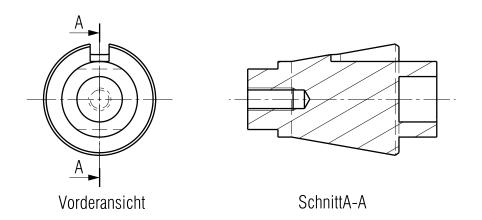

Untersicht e


Rückansicht f

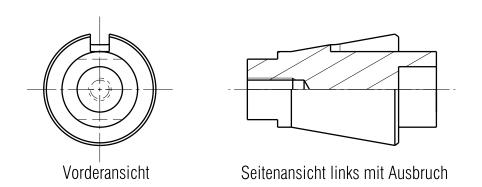
Seitenansicht rechts d

Vorderansicht a

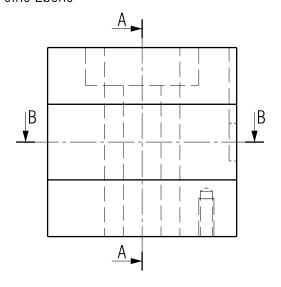

Seitenansicht links c

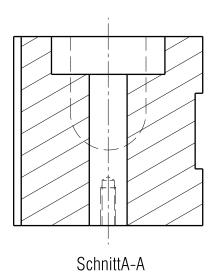

Draufsicht b

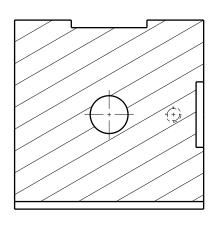
Darstellungsmöglichkeiten einer Welle:


Ohne Schnitt

Mit Schnitt

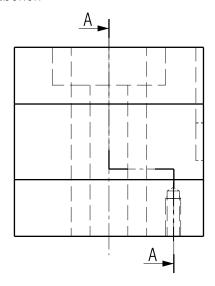


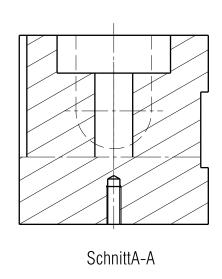

Mit Ausbruch



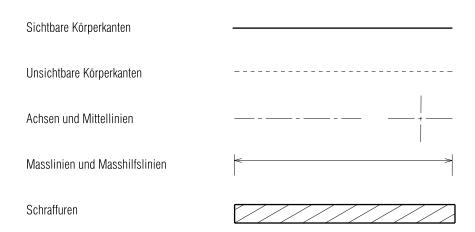
Schnitte eines Werkstücks:

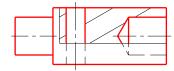
Schnitte durch eine Ebene





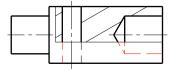
SchnittB-B


Schnitt durch zwei Ebenen

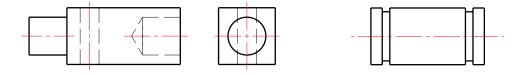

Linien:

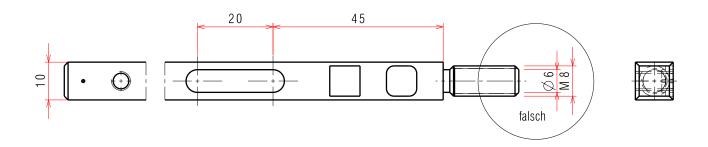
Linientypen:

Sichtbare Körperkanten:

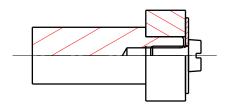

Sichtbare Körperkanten werden mit einer dicken, ausgezogenen Linie gezeichnet!

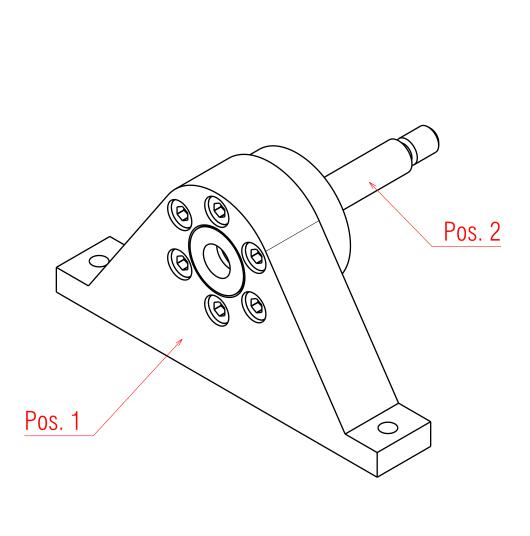
Unsichtbare Körperkanten:


Unsichtbare Körperkanten werden mit einer dünnen, gestrichelten Linie gezeichnet!


Achsen:

Zylinderförmige Konturen wie Andrehungen, Bohrungen und Wellen haben immer eine Achse oder eine Mittellinie. Sie werden mit einer dünnen, strich-punktierten Linie dargestellt!


Masslinien und Masshilfslinien:


Masslinien und Masshilfslinien werden mit dünnen, durchgezogenen Linien gezeichnet, wobei die Masshilfslinien immer bis zur Körperkontur gezeichnet werden müssen!

Schraffuren:

Schnittflächen werden mit regelmässigen Linienmustern aus dünnen, durchgezogen Linien dargestellt. Sie werden in verschieden Winkeln und Abständen gezeichnet. Je kleiner die Schnittfläche, desto kleiner der Linienabstand. Bei geschnittenen Baugruppen werden zur besseren Unterscheidung der einzelnen Teile zusätzlich die Winkel der Schraffuren zueinander geändert.

2		1						Welle									
1		1						Wellenha	alter								
Pos.		Menge	Ein- heit	I Sacooummer I					Benennung/Merkmale								
And.					And.				Gezeichnet E-Mail Tel. direkt / Fax Datum	S. Steiner steiner@physik.unizh 044 635 57 60 / 044 17. März 2009			Massstab 1:1				
Sep.S	Ohne sep. Stückliste Sep. Stückliste Sep. Stückliste Sach-Nr						Sach-Nr.		Auftrags-Nr. Ursprung Ersatz für	TT. Watz 2003		Anzahl Blatt 2	Blatt-Nr.				
Physik Institut Universität Zürich Winterthurerstrasse 190 8057 Zürich Tel. 044 635 57 11 Fax. 044 635 57 04					UII	Benennung		Projekt Filename: Projekt_Welle									

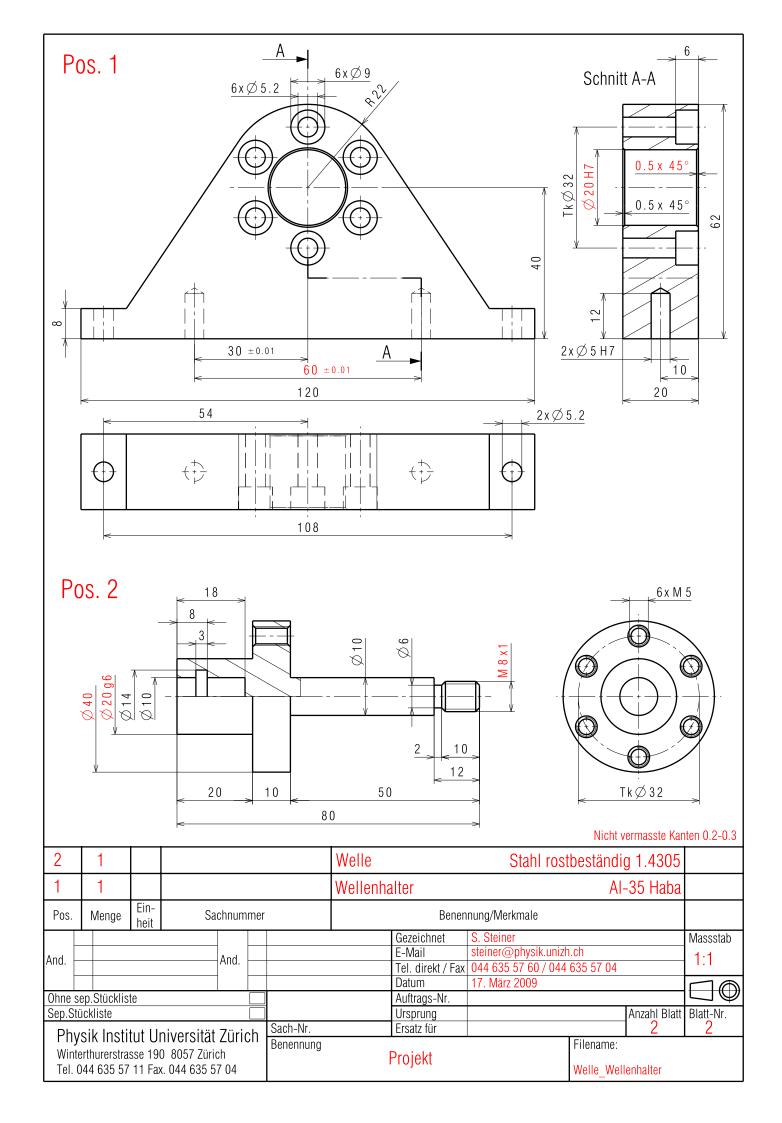


Tabelle 62/1 Einheitsbohrung (H8, H7) mit entsprechenden Wellen gepaart

Pas-	Н8	H7	d President and fell der	nu reblettonmeto I TVT alfact un					
sung	We	elle	Passungscharakter	Anwendungsbeispiele					
	d9	ey2-r	Reichliches Spiel	Mehrfach gelagerte Welle, Gleitiagerung					
	e8		Merkliches Spiel	in weitem Temperaturbereich Hebellagerung					
rajois	h9	Tig pa	Leicht verschiebbar	Verschiebbare Kupplung, Distanzhülse					
Spiel	f7		Kleines Spiel	Führungsstein, Kreuzkopf-Gleitbahn					
	Children II	g6	Ohne merkliches Spiel	Genaue Gleitlagerung					
	h7	h6	Bei Verwendung von Schmiermitteln gerade noch verschiebbar	Stellring, Wechselrad Zentrierung, Reitstockpinole					
T		js6	Unter leichtem Druck noch verschiebbar	Genaue Zentrierung					
Über- gang		k6	Ohne erheblichen Kraftaufwand zusammengefügt	Handrad, Kupplung, Riemenscheibe					
	1	n6	Unter Druck zusammengefügt	Drehmomentübertragung mit zusätzlicher Verdrehsicherung					
		p6	3-M						
Pres- sung		r6	Durch Pressen zusammengefügt oder aufgeschrumpft	Übertragung kleiner Drehmomente ohne zusätzliche Verdrehsicherung					
		s6							

Tabelle 62/2 Einheitswelle (h9, h6) mit entsprechenden Bohrungen gepaart

Pas-	h9	h6		
sung	Bohrung		Passungscharakter	Anwendungsbeispiele
7 65573	H11	STEAT 1	Meist reichliches Spiel	Leicht zusammensteckbare Teile
	D10		Sehr reichliches Spiel	Lose Keilverbindung mit Anzug
	E9		Reichliches Spiel	Steckverbindung, Hebellagerung
Spiel	F8		Merkliches Spiel	Gleitlagerung
		G7	Ohne merkliches Spiel	Präzisions-Geradführung
	Н9		Von Hand gerade noch	Lose Keilverbindung (Welle und Nabe)
44	-1.14	H7	verschiebbar	Verschiebbare Kupplung
	JS9		Unter leichtem Druck noch	Leichte Keilverbindung in Nabe
	431	JS7	verschiebbar	Oft auseinanderzubauende Teile
Über- gang		K7	Ohne erheblichen Kraftaufwand zusammengefügt	Handrad, Kupplung, Riemenscheibe
		N7	Unter Druck zusammengefügt	Zylindrischer Stift
	P9		Eventuelle Einpassarbeit	Feste Keilverbindung (Welle und Nabe)
Pres- sung		P7	Durch Pressen zusammengefügt oder aufgeschrumpft	Übertragung kleiner Drehmomente ohne zusätzliche Verdrehsicherung

Tabelle 56/1 Abmasse der Wellen (SN EN 20286-2)

mass in mn	per	1	60	9	10	18	30	20	65	80	100	120	140	160	180	200	225	250	280	315	355
. 9 5	bis	3	9	10	18	30	90	65	80	100	120	140	160	180	200	225	250	280	315	355	400
8	6 P	- 20 - 45	- 30 - 60 - 76 - 76 - 50 - 50 - 177 - 117 - 100		- 174	- 120	- 207	- 145			- 170			- 190		-210					
	Ф	11	11	1.1	11	1.1	11	1	1	1	1	2	1 1			1.1		- 1	1	1	. 1
	80	14	38			901	72	126		148		1	100		10	191	25	214			
	+7	11	11	11	11	11	11	16.50	1	1			11	100		11				1	-
	\vdash	- 91	10 -	13 -	16 -	20 -	25 -	30	000	36			8331								
	96	1.1	- 12	14	- 17	- 20	- 25	10	185C	12		=	- 14					57		11:00	
OF	-	1 8 2	1	1	1 92	- 0	0.0	0	I O	01	1		1			10 4		4	0	m	1
ere	5	04	0.0	09	0 80	00	01	0		0	15		0 8			20		0	23	0	25
un e	r P	1	1.	1	- 1	1	- 1		1		1		1			1			1		1
n p	9	09	0 80	00	01	0.00	160	0		0	22		25			29		0	32	0	
nte	h7	1	1	1	7	- 2	- 2		e I		0		4			4			5		1
A e	\vdash	100	1 20	100	0 00	21 -	25 -	0	0	0	1		004			09		0	1 2	0	- 1
pm	8	14	41 18 18 18 18 18 18 18 18 18 18 18 18 18		0	46	54		63			72			0.18		0 68				
asse	h 9	1 2	1	- 1	1	- 1	1		-		1		1 10			=			- 13	5	- 14
3	-	25 -	900	36	430	1 1 1			870			1000	-								
/erte	Ξ	09	75	006	110	130	160	0		0	220		250			290		0		0	360
in	js 5	+2	±2,5	#3	4	+4,5	+5,5	∓ 6,5		,	D, 1	6) H					1		± 12		
rm;	is	# 3	+ 4	±4,5	+ 5	÷ 6,	41		H-	+		+1						+H		r0	
Obere und untere Abmasse (Werte in μm; 1 μm = 0001 mm = 1 Mikrometer)	9	+1	+1		5,5 ±	+1	+1	ч	41				± 12,5		4, 4			+1			
	\$ 13	20	96	± 110	35	165	195	020	200	±270		315					405				
n 10	js 14	± 125	± 150	± 180	±215	±260	±310	220	H	0,00	H H	7	+ 500			±575			± 650	£ 700	
E	×	+	++	+ +	++	++	++	+			+		+ +			++		+	+	+	+
-		40	9-	V-1	0-	12	50			⊕ £0 + +		200				24		_		_	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Σ ¥	8 8	+	+ +	+ +	+ +	+ +	++	17.7	4	+ 25			+ + 28					0.9		1 20	
ron	-	++	++	++	++	++	++	_	+	-	+	9	+ +			++				-	201
ete	5	90	0.4	42	15	7 8	20	24	F	28	13	[5]	33		8	37		43	20	46	21
-	Ε	+ +	++	+ +	++	++	+ +		+		+	11	+ +			++					
	-	200	0.4	6.5	81/	21	25	30 +		32	_		15							-	_
	n 5	+ + w 4	+ +	10 +	+ 20	+ 24	+ 28	33	+ 50	38	+		+ 45								
	-	4 +	+ +	+ +	++	++	++	_	+	-	+ m		++			++		_		_	_
	9	10	16	100	23	28	33	39		45			52			31		_			
	۵	++	++	+ +	++	+ +	++	100	+		+		+ +			+ +		+	+	+	+
	s d9 e8 f7 g6 h5 h6 h7 h8 h9 h11 js5 js6 js13 js14 K5 K6 m5 m6 n5 n6	612	120	15	188	35	45	51		-	37		68			209		-	-	-	-
	r 6	++	++	++	++	44	++	++	++	++	++	++	++	++	+ 106	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 144 + 108 + 150				
	-	16 + +	15 +	19 + +	234 + +	41 + 428 + +	34 + +	4 + +	43 + +	73 + +	76 + +	+ +	+ +	+ + 68 + +	++					+ +	+
		20	27	32	39	35	59	72	78	93	101	117	125	133	151	4	4-4-	444 444	202	226	244
		+ 24	+ 31	+ 38	+ 46	+ 56	+ + 68	+ +	+ 89	+ 106	+ 114	+ 132	+ 140	+ 148	+ 168			+21+	+ 22 + 17	+247	+ 26

Tabelle 57/1 Abmasse der Bohrungen (SN EN 20286-2)

7	202	23	283	16	20	25	99	823	38	41	88	90	53	090	63	137	74	130	14	503																									
000	1.1	1.1	1.1	1.1	1.1	1 1	1 1	11	1.1	1.1	1 1	1.1	1 1	- 60	1.1	- 67	1.1	1.1	- 87 - 144	1 1																									
6	31	54	51	18	22	26	32	901		24	10	- 43			50	E JIII	56	98	62	05																									
0	1.1	1.1	11	1.1	1.1	1.1		1	1	1	STILL	1.1	177714	dos	1.1	eo.m.	1		1	1																									
1	9	20	24	29	14	17	21	51	24	29	883	28		1700	33	10	36	80	1.4	98																									
۵	11	11	1.1	1.1	1.1	1.1	- 1	1	1		PAUL	1.1		elgi	11		1	1	1																										
(r 6 N	29	300	36	43	250	620	0	74	0	87	1 11	100	6111	16.8	115	nat	0	9	0	40																									
o 2	1.1	1	- 1	1	1	1		1	Les -	1		- 1			1		133	1		ī																									
~	44	49	40	23.5	28	330	0	39	9	45		12			14		4	99	16	73																									
Z	1.1	1.1	1.1	1.1	1.1	1.1	100	1	1		100	1.1		1000	1.1			1	1																										
1	00	00	0.0	0 80	20	25	0	30	0	35		00		7 1	0 94		0	25	0	27																									
Z	11	1	1		1	1	010	1	80	1	219	1		1			1	1		1																									
9	0,00	-0	20	45	47	204	2	24	9	28	911	33.8		2012	378		0		5	9																									
5	11	11	11	1.1	1.1	1.1		1		1		1 1		114	1 1				1																										
_	00	ოთ	20	90	0.0	1/8		51		25		128			333		9	<u> </u>	17																										
K 7	1	+1	+ 1	+1	+ 1	+ 1		1	1 3/31	1	1333	+ 1		UNG	+ 1		+		+																										
_	09	0.0	212	00	45	200		5		8	7 10	217	90.	5181	24	DU	2		7																										
9 K6 K7 N	1	+ 1	500.00	+ 1	+ 1	+ 1		-	+		- 7	+ 1		1341	+ 1		+		+																										
6	rů.		+ 1	rū.					-	0					57,5																														
18.9	± 12,5	+ 15	1 1 28	±21,5	±26	#31		H 0	1/5	4	191	₹ 20		6[7]	±57		00	3	100	1																									
G7 G9 H6 H7 H8 H9 H11 H12 H13 JS7 JS	2	9	7,5	6	10,5	± 12,5			1	, , ,			NI B	1100				-	L L	0																									
JS	+1	+1	+1	+1	+1			H		+1		±20			±23		30		00	H																									
5 5	+ 140	180	220	270	330	390	160	460		+ 540		+ 630		1250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		+ 810		+ 890																											
I	+	+	+	+	+	+	+	+		+		A BAN TRO		Fatzleto			+	(88	+																										
12	90	120	+ 150	180	210	+ 250	300	300		+ 350		004		460		520		570																											
: <u>-</u>	+	+	+	+	+	+	+	+		0		+		+		+		+																											
H 11 H 12 H 13	9 +	+ 75	80	+ 110	+ 130	+ 160	190	0	+ 220	0	250		+ 290			+ 320		+ 360																											
6	25 +	90	98	640	52	62 d + + +				46 + 74 +		+ 74		+ 74		+ 74		+ 74		+ 74		+ 74		74												87		+					0		0
E I	+	+	+	4	+	+																					- w		-	+ 100			+ 115		+ 130		+ 140								
-	40	80	220	27	33	39		0																63			720		18	0	68														
H 8	7			+	+	+	4		4		115	+		1.5	1		+		+																										
-	00	00	150	80	210	25		0	35	0		00			46		52	0	57	0																									
H 7	+	+	+	+	+	+	+		+			4			4		+		+																										
-	90	000	00	10	0.0	16		0	22	0		25			29	_	32	0	36	0																									
9 H	+	+		+	+	+	+		N			+			2		60		+																										
5 —	27 +	4 4	+ 4	64	59 +	116	+		+	_		+	-		-	1	-		70																										
6 5	++	+ +	79.90	4 +	++	++											link.		12																										
5 -	20		20 + +	24	28 +	34	0	0	1	72		14	-		15	Harris .	69	_	75	00																									
67	++	+ +	++	++	++	++		7	1000	+	1	++			++			+	100	+																									
	20 +	10 +	135	16 +	53	64 +		30		36		43			22 +	100	37		15																										
80	++	++	12.00	4+	++	++		+	100 50	+	R. P.	0 + +			+ +		+	+	5	+																									
-	16	101	138 + +	34	41 + +	50 + +				36		83			96				0	23																									
F7	+ +	++								+		+ + 0 4			++		+ 108	4)	+ 119	φ.																									
_	39	200							50	-				0	0	10	10																												
6 3		++	++	++	++	+ 112	5	9	15	+ 72		+ 185			+215		+ 240	F	+ 265	1																									
_	+ + 500 500	78 ++	98			88	0	0	0	0		50			100		0	0	0	0																									
D 10	++	++	94	+ 120	+ 149	+ +	1 22	+ 100	1 26	+ 120		+ 305			+ 355		+ 400	+ 15	+ 44	+210																									
								100	500								1	11111																											
bis	60	9	5	8	39	50	65	8	100	120	140	160	180	200	225	250	280	315	355	400																									
in mm	_									.5552				(5)7/0		6.65	3.5	1202	1000	1,000																									
0 -	1	0	9	0	00	30	20	65	80	00	120	40	09	80	200	225	250	280	315	355																									
in																V.	1 165																												